Approach to Lupus Nephritis and Neurological Disease
Case

- A 23 yo AA female is referred for recent onset lupus manifested by arthritis, discoid lesions, mouth sores, and nephritis. Her PCP started her on prednisone 10mg a day.
- Physical exam shows BP= 150/100 mmHg. She has two discoid lesions on her face, three oral ulcers, synovitis of several MCP and PIP joints and both wrists, and 2+ pedal edema.
- Laboratories show Hct 32%, WBC 3400/microL, plts 146,000/uL. Chemistries are normal except for creatinine 1.4 mg/dL and albumin 2.9 mg/dL. Urinalysis shows 4+ protein, large blood, and 1-2 RBC casts/HPF. Spot urine protein/creatinine ratio is 6.
- Serologies show a positive ANA, anti-dsDNA > 300 units, low C3 52 mg/dL, low C4 <8 mg/dL, and the presence of a lupus anticoagulant.
Case

- Questions
 - Should a kidney biopsy be done? When and why?
 - Does the kidney biopsy help determine initial therapy?
 - What clinical parameters determine choice of induction therapy?
 - What are the goals of induction therapy?
 - What clinical parameters determine choice of maintenance therapy?
 - What is the best maintenance therapy?
 - What adjunctive therapies should be used in this patient?
 - How is response to therapy monitored? When should therapy be changed?
 - What responses predict prognosis?
Lupus Nephritis

- Approximately 50% of SLE patients develop significant lupus nephritis.
- Poor prognostic factors
 - Young (age < 26yo) and African-American
 - Elevated creatinine (> 30% over baseline) and/or nephrotic range proteinuria (> 3 gm/day)
 - Biopsy: crescents, fibrinoid necrosis (> 25% of glomeruli), and microvascular clots. Class III or IV with significant activity (index >10) and/or chronicity (index > 3-4).
 - Poor initial response to therapy
 - Renal relapse
 - Noncompliance with medications
Renal biopsy indications

- Increased creatinine
- Urine protein > 1 g/d
- Urine protein > 0.5 g/d + active sed

Active urine sediment = cellular casts and/or ≥ 5 RBCs/HPF.
Level of evidence (LOE): 2C

Clinical, serological, and laboratory tests cannot accurately predict renal biopsy findings in most cases (LOE:2B).

Hahn BH et al. *Arth Care Res* 64: 797-808, 2012
Kidney Biopsy

- Case: Pt had kidney biopsy showing Class IV-G (A) plus V with 10% crescents and microthrombi. No necrosis. Immunofluorescence shows IgG/IgM/IgA/C1q/C3 deposits (full house pattern), EM shows subendo/subepithelial deposits.

- ISN/RPS 2003 Classification for Lupus Nephritis
 - Classification for Lupus Nephritis
 - I- Normal with minimal mesangial deposits
 - II- Mesangioproliferative (12-25%)
 - III- Focal (< 50% of glomeruli) (16-22%)
 - III (A): active lesions (proliferative, subendo deposits)
 - III (A/C): active and chronic lesions
 - III (C): chronic lesions
 - IV- Diffuse (> 50% of glomeruli) (37-46%)
 - Diffuse segmental (IV-S) or global (IV-G)
 - IV (A, A/C, or C): same as III
 - V- Membranous (11-21%) (subepi deposits) (May be combined III/IV)
 - VI- Advanced sclerosing (> 90% glomeruli) (4%)

Lupus Nephritis ACR Guidelines: Induction Rx

ISN Class

V

I, II, VI

III, IV

MMF 2–3 g/day
(AA, Hispanics)

+ GC

CYC

+ GC

No Immunosuppressive Rx

Low-dose
500 mg iv
q2wk x6

High-dose
0.5–1.0 g/m²
BSA iv qmo x6

GC = iv pulse x 3d followed by 0.5 mg/kg/d (Class V, no crescents) or 1 mg/kg/d (crescents) tapered over weeks to lowest effective dose

Prednisone Therapy for LN: Clinical Considerations (LOE: 3C)

- When to use intravenous pulse methylprednisolone
 - Class IV or IV/V with cellular crescents and/or fibrinoid necrosis
 - Dose: 500-1000mg intravenous q day x 3 doses
- Initial corticosteroid dose
 - Prednisone (1mg/kg divided): Class IV or IV/V with crescents
 - Prednisone (0.5mg/kg): Class III, IV, or V without crescents
- Prednisone taper: after 4 weeks on full dose taper by 2.5mg every 2 weeks to 10mg/day by 6 months if no relapse
Induction Therapy for Class III/IV LN: Clinical Considerations

- Cyclophosphamide vs mycophenolate mofetil are equivalent in most situations during first 6 months (LOE:1A).
 - Cyclophosphamide preferred (LOE:2B) for:
 - Poor prognostic factors: rapidly progressive renal deterioration (50% dec in creatinine from baseline) and/or cellular crescents/fibrinoid necrosis (esp > 25% of glomeruli)
 - Poor compliance
- Cyclophosphamide regimens:
 - NIH protocol (0.5-1.0 mg/m² IV monthly x 6) (LOE:1B)
 - Euro-Lupus protocol (500mg IV q 2weeks x 6): best to give to Caucasian patients. Not tested in nonwhite races.
 - Other considerations: mesna, leuprolide

Induction Therapy Class III/IV LN: Clinical Considerations

• Mycophenolate mofetil (MMF) and mycophenolic acid (MPA) dosing
 – Patients with LN Class V (pure membranous) and nephrotic range proteinuria should be treated with MMF and prednisone (0.5mg/kg/d with taper) for 6 months (LOE:2B).
 • In selected pts that are non-nephrotic and intolerant to MMF can consider azathioprine (LOE:4C)
 – Patients with LN Class III/IV without adverse prognostic factors can be treated with MMF or CYC and prednisone (0.5mg/kg/day with taper) for 6 months (LOE:1A).
 • In selected pts that are intolerant to MMF and CYC can consider azathioprine (LOE:2C)
 – All ethnicities with LN have similar responses to MMF
 • African-Americans and Hispanics may respond better to MMF than CYC
 – Dose: MMF 2000-3000mg/day; MPA 1440-2160mg/day
 • Asians may respond to lower doses (MMF:2000mg/day) compared to other ethnicities that need higher dose.

Induction Therapy: Response Goals by 6 Months

- Complete response (LOE:1B)
 - Improvement of CrCl to normal or within 10% of normal, decrease in proteinuria to less than 0.5 gm/day, and no cellular casts.

- Partial response (LOE:1B)
 - Improvement of proteinuria by > 50% to non-nephrotic range and CrCl normal or within 10% of normal (Cr < 1.4mg/dL) with no cellular casts. May take up to 12 months or longer to achieve.

- Kidney survival
 - A > 25 % reduction of proteinuria by 2 months, 75% reduction by 3 months, and/or reduction to < 1 gram/d and a normal C3 by 6 months predict a good renal outcome.
 - Overall 30% achieve complete remission (CR) by 6 months and 65-80% achieve at least partial remission (PR) or better by 12 months.
 - Failure to achieve CR or PR by 12-24 months is associated with end-stage renal disease within 5-10 years.
 - Class IV: 20-30% ESRD
 - Class V: 10% ESRD

Lupus Nephritis ACR Guidelines: Maintenance Rx

MMF x6 mo

- **Induction Rx**
 - MMF 1–2 g/day or AZA 2 mg/kg/day ± low-dose GC
 - Improved
 - Not improved

- Improved

- **CYC + GC**
 - Not improved

- **RTX or calcineurin inhibitors**
 - Not improved

CYC x6 mo

- Improved

- Not improved

- MMF 2–3 g/day x6 mo + GC

GC = iv pulse followed by 1 mg/kg/day with taper

Maintenance Therapy for LN

- For patients who achieved CR or PR at 6 months on CYC or MMF with taper of prednisone (≤ 10mg/d) (LOE:1A):
 - MMF: 1000-2000mg/d
 - Azathioprine: 2mg/kg/d. Best results in Caucasians. Consider if pregnancy planned.

- Continue maintenance therapy for at least 3 years (LOE:3C). Prednisone tapered to 5-7.5 mg/day by 12 months if possible.

Refractory Disease: Recommendations for Change in Therapy

- Patients who worsen within 3 months (> 50% increase in creatinine or proteinuria) or fail to respond (achieve partial remission) with 6 months of induction therapy should have change in therapy (LOE: 4C).
 - All pts should get 3 days of intravenous pulse methylprednisolone.
 - Pts on MMF could switch to CYC
 - Pts on CYC could switch to MMF
 - Pts who fail MMF or CYC can add or switch to rituximab or calcineurin inhibitors (especially Class V LN)
 - Belimumab being studied for induction and maintenance of certain presentations of LN.

Lupus Nephritis ACR Guidelines: Adjunctive Treatments

All patients
- Hydroxychloroquine
- ACEi +/- ARBs >0.5 g/d proteinuria
- BP <130/80
- Statins: LDL >100 mg/dL
- Calcium, vitD, D/C smoking, immunizations

• ASA and/or anticoagulation for mild thrombotic microangiopathy (TMA) on biopsy. If TMA predominant lesion treat with plasma exchange and anticoagulation.

• Anticoagulation for nephrosis and albumin < 2.0gm/d

Lupus Nephritis Monitoring Schedule

<table>
<thead>
<tr>
<th></th>
<th>BP</th>
<th>U/A</th>
<th>Urine Pr/Cr</th>
<th>Serum Cr</th>
<th>C3/C4</th>
<th>antiDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active LN</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Previous LN, now inactive</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>No prior hx of LN</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Monitoring schedule: # months

Hahn BH et al. *Arth Care Res* 64: 797-808, 2012
Case

- Patient treated with IV pulse methylprednisolone for 3 days followed by prednisone 30mg BID and MMF 1.5 grams BID.

- She was also placed on calcium, vitamin D, lisinopril, hydroxychloroquine, and ASA.

- At 3 months her creatinine was 1.2mg/dL and proteinuria decreased to 2.8 grams/day. Her C3, C4, and anti-dsDNA were improved but still abnormal. She was on MMF and prednisone 35 mg q day.

- At 6 months Her creatinine was 0.9mg/dL, proteinuria 1.2 grams/ day. Her C3 was normal, C4 low, and anti-dsDNA mildly elevated at 60 units. She was maintained on MMF and prednisone 10mg q day.
Special Situations

- Pregnancy and lupus nephritis
 - Pregnancy should be planned. Ideally LN (and lupus) should be inactive for 6 months with proteinuria < 1 gram/d and CrCl > 50ML/min.
 - Serum C3/C4 should rise during normal pregnancy
 - Patients should be off MMF and CYC for 3 months before conception
 - Hydroxychloroquine, prednisone, and azathioprine can be used during pregnancy. ASA to reduce preeclampsia risk.
 - Blood pressure control without ACEi or ARBs. Can use labetolol or nifedipine.
 - Close surveillance for postpartum flare of lupus and LN.

- Pediatric lupus nephritis
 - Children at increased risk for LN (2x risk compared to adults).
 - Children frequently present with LN and have more active disease and damage.
 - Steroid side effects worse in children including growth retardation

End-stage renal disease

- Up to 30% of patients progress to ESRD within 15 yrs
- Disease activity tends to decrease in patients with ESRD on dialysis
- Lupus activity and serology should be controlled 3-6 months prior to renal transplant.
- Renal transplantation is best with living donor and pre-emptive transplant
- Post-transplantation recurrence of lupus nephritis is a rare cause of allograft rejection.
Case

- A 25yo woman with SLE for 6 months is admitted with generalized seizures. Her friends reports she has had more problems with arthritis and severe depression. Notably she stopped her prednisone due to weight gain a month ago. Past history is significant for an episode of optic neuritis 3 months ago treated with prednisone.

- Physical exam shows she is afebrile, pulse 90 reg, BP 155/95mmHg. She is postictal and unable to follow commands. She has a malar rash, oral ulcers, synovitis of hands and wrists, and livedo reticularis over her lower extremities. Neuro exam is difficult but nonfocal.

- Laboratories show Hct 32%, WBC 3400/MicroL, plts 124,000/microL. Chemistries are normal except for creatinine 1.2 mg/dL and albumin 3.1 mg/dL. Urinalysis shows 2+ protein, small blood, and 1-2 granular casts/HPF.

- Brain CT scan in ER showed no infarct or bleed.

- Serologies from 3 months ago showed positive ANA, positive anti-SS-A, anti-ds DNA > 300, low C3 62 mg/dL, low C4 <8 mg/dL, and the presence of a lupus anticoagulant.
Case

• Questions
 – Is this patient CNS dysfunction more likely due to NPSLE or a non-lupus cause?
 – What are the NPSLE syndromes?
 • How does the pathogenesis differ between them?
 – What is the diagnostic workup?
 • What laboratory tests are helpful?
 • When should a spinal tap be done?
 – What should be ordered?
 • What is the best radiographic test: CT vs MRI, MRA vs angiogram?
 – How should the treatment be tailored to the NPSLE manifestation?
 – What is the long term prognosis for patients with NPSLE?
Neuropsychiatric Lupus Erythematosus (NPSLE)

- Approximately 20% of SLE pts develop NPSLE during their lifetime (LOE:2B).
 - Most (60%) of NPSLE occurs at SLE onset or within first year of disease.
 - Most (50%) occur in the presence of generalized SLE activity.
- Risk factors (5x increase in risk)(LOE:2B)
 - Generalized SLE activity (especially for seizures and cognitive dysfunction)
 - Previous NPSLE events or concurrent NPSLE manifestations
 - Antiphospholipid antibodies (especially for stroke, seizures, progressive cognitive dysfunction, myelopathy, and chorea)

West SG. In Dubois’ Lupus Erythematosus and Related Syndromes, 8th ed, pp368-381, 2013
Neuropsychiatric Syndromes

- **CNS (80% of all NPSLE events)**
 - Acute confusional state (delirium to coma)
 - Cognitive dysfunction (mild to dementia)
 - Psychosis
 - Anxiety disorder
 - Mood disorder
 - Headache
 - Seizures
 - Demyelinating syndrome
 - CVA (stroke)
 - Transverse myelitis
 - Movement disorders
 - Aseptic meningitis

- **PNS (20% of all NPSLE events)**
 - Cranial neuropathy
 - Polyneuropathy
 - Plexopathy
 - Mononeuropathy
 - Guillain-Barre (AIDP)
 - Autonomic disorder
 - Myasthenia gravis

Arthritis Rheum 42:599-608, 1999
Neuropsychiatric Syndromes

• Case definitions
 – Prevalence in SLE (57-91% of SLE pts vs 56% of controls)
 • Sensitivity 91% ; Specificity 46%

• If exclude minor syndromes without objective findings (anxiety, headaches, mild depression, subjective cognitive complaints, polyneuropathy with negative EMG/NCV)
 – Prevalence of NP lupus 2-19%
 • Sensitivity 91% ; Specificity 93%

• Overall: 40-50% of CNS dysfunction due to SLE and 50-60% due to nonSLE cause.
• Overall: 40% present with diffuse/seizure, 40% focal sx, and 20% complex.
Theories of Pathogenesis

- Vascular occlusion
- Antineuronal antibodies
- Cytokine and small molecule effects
- Others: choroid plexus dysfunction, neuroendocrine-immune system
- Combination

- Different clinical presentations have different or combined pathogenesis.
- Knowing the suspected pathogenesis dictates therapy.
Vascular Occlusion (Focal sx)

Correlates with high SLE activity
- Vasculitis

Correlates with antiphospholipid abs
- Bland vasculopathy

- Leukoagglutination

- Clot
Antineuronal antibodies

- Serum antineuronal antibodies (associated with certain diffuse and focal sxs). Over 20 described but only a few can be tested for.
 - Neural tissue specific:
 - Antineuronal (neuroblastoma cells)
 - Aquaporin-4 (anti-NMO)
 - Non-neural specific:
 - Anti-ribosomal P
 - Antiphospholipid antibodies
 - AntiDNA/NMDA receptor (anti-NR2)
- CSF antineuronal antibodies
 - Correlates with diffuse symptoms
 - Origin of antibodies
 - Serum antibodies cross BBB
 - Intrathecal synthesis

CSF Immunologic Tests

- \(Q \text{ albumin} = \frac{\text{CSF albumin} \times 10^3}{\text{Serum albumin}} \)

- \(\text{IgG index} = \frac{\text{CSF IgG} \times 10^3}{\text{Serum IgG}} \times \frac{1}{Q \text{ albumin}} \)

- Oligoclonal bands
How to Interpret CSF Immunologic Protein Results

CSF Immunologic Protein Assays

- Q Albumin
 - NL IgG Index
 - OCBs

- IgG Index ± OCBs
 - Q Albumin
 - Meningitis (33%)
 - Encephalitis (35%)
 - Neurosyphilis (50%)
 - Others (5%)
 - NL Q Albumin
 - MS (80-90%)
 - SSPE (100%)

- Encephalitis
- Meningitis
- Neoplasia
- Polyneuropathies
- Strokes
- Diabetes
- Spondylitis/discs

SLE
Theories of Pathogenesis

• Cytokine and small molecule effects
 – Multiple cytokines, chemokines, and enzymes are elevated in the serum and CSF of patients with NPSLE.
 – Induction of intrathecal cytokines and matrix metalloproteinases caused by uptake of intrathecal autoantibodies/immune complexes by glial cells.

• Others: choroid plexus dysfunction, neuroendocrine-immune system

• Combination of mechanisms common especially in those presenting with both diffuse and focal manifestations (complex presentations)

Diagnostic Tests (LOE: 2D)

- CBC with peripheral smear (R/O TTP)
- Chemistries, liver-associated enzymes, urinalysis
- C3/C4, anti-dsDNA antibody level
- Antiphospholipid antibodies
- CSF: routine, Q albumin, IgG index, OCBs, appropriate cultures and viral PCRs (when indicated)
- MRI (T1/T2, FLAIR, DWI, and gadolinium-enhanced T1) (LOE:1A)
- EEG (for seizures)
- Other tests when indicated: specific autoantibodies, C-reactive protein, echo, carotid U/S, neuropsychometric tests, MRA, cerebral angiogram, nerve conduction studies
Secondary Causes of CNS Dysfunction in SLE pts

- Infection
- Medication
- TTP
- **Hypertension**(RPLS)
- Uremia
- Electrolyte imbalances
- Fever
- Thyroid disease
- Atherosclerotic strokes
- Subdural hematoma
- Berry aneurysm
- Cerebral lymphoma
- Fibromyalgia
- Reactive depression
- **Sleep apnea**
- Other primary neurologic or psychiatric disease
Autoantibody and NPSLE Manifestations

- Antiphospholipid antibodies: stroke, seizures, progressive dementia, myelopathy, and chorea.
- Anti-ribosomal P: psychosis, depression, active NPSLE.
- Anti-aquaporin 4/anti-neuromyelitis optica (anti-NMO): optic neuritis, longitudinal transverse myelitis. Most patients also have anti-SS-A antibodies.
- Serum and CSF anti-neuronal antibodies: more common in patients with active NPSLE.
- Anti-dsDNA/anti-NMDA receptor (anti-NR2): severe cognitive dysfunction.
Neuroradiographic Imaging

- CT scan: hemorrhage, subdural
- MRI with gadolinium
 - Focal sx/ seizures > diffuse sx
 - Beware white matter hyperintensities: common in patients with HBP, CVD, DM, smoking, ↑ lipids, migraines, age > 50, aPLabs
- MRA vs angiogram
 - Only consider if have larger brain lesions involving grey and white matter

Diagnostic Approach

- Initial diagnostic workup is to rule out secondary causes especially infection (CBC, CSF, cultures), TTP (peripheral smear, platelets, LDH), metabolic (chemistries), hypertension/RPLS (MRI), sleep apnea (snoring), and medications.
- Assess lupus activity: clinical sxs, C3, C4, anti-dsDNA.
- Diffuse symptoms: CSF IgG index/OCBs, CSF antineuronal antibodies, serum anti-ribosomal P. MRI frequently normal (50%) but helps to rule out other causes.
- Focal symptoms: vasculitis (skin vasculitis, CSF with ↑cells and protein), antiphospholipid antibody syndrome (skin livedo, positive aPLabs, CSF with mild↑ protein but few cells), MRI (focal lesions in > 80%), echo (if suspect emboli), anti-NMO (optic neuritis, transverse myelitis)
- Seizures/complex presentations: all of above
- PPV 92%, Sensitivity 90%, Specificity 92% for above tests
Case

- CNS manifestation: seizures, progressive depression, hx optic neuritis, off prednisone
- Initial evaluation: secondary causes unlikely.
- Assess lupus activity: clinical (arthritis, nephritis) and serologies (low C3, high anti-dsDNA) suggest active lupus.
- Diffuse and seizure sxs: Lupus anticoagulant (seizures) and anti-ribosomal P positive. CSF showed 3 cells (lymphs), protein 62 mg/dL, IgG index 0.72, and 5 OCBs. Blood and CSF cultures negative.
- MRI shows several scattered white matter hyperintensities. None enhance with contrast. EEG shows left sided epileptiform discharges.
- Past hx of focal sxs (optic neuritis): anti-NMO antibody positive
Treatment (A,B,C and 5 ‘Ps’)

- Aspirin
- Biologics
- Warfarin (Coumadin)
- Hydroxychloroquine (Plaquenil)
- Fluoxetine (Prozac)
- Prednisone
- Powerful cytotoxics
- Plasma exchange
Treatment

• Minor manifestations
 – Sx therapy: ASA, hydroxychloroquine, antidepressants/psychotics, analgesics, anti-seizure meds. Control blood pressure.

• Major manifestations: Diffuse CNS symptoms
 – Sx therapy
 – Corticosteroids (1 mg/kg in divided doses for 4-6 wks then taper)
 • Double the prednisone dose or use dexamethasone (12-20mg day) if fail to respond to prednisone (1mg/kg/day) within 72hrs.
 – Cytotoxics: cyclophosphamide > others
 • IV cyclophosphamide (0.75-1.0 gm/m²/day) for 3-6 months
 • Other methods of cyclophosphamide: low dose IV (500mg IV q2weeks x 6 weeks) or daily oral cyclophosphamide
 – Other: pulse methylprednisolone (1 gram/day x3 doses if severe presentation); plasma exchange (coma and no response to other therapy in 3-7 day); rituximab (1 gram x 2 or 375mg/m² weekly x 4 weeks)

Difficult Clinical Situations

- Severe, refractory NPSLE
 - One approach (after 3 day methylprednisolone pulse)
 - Prednisone 30mg BID or dexamethasone 6mg BID and start taper as soon as improvement occurs
 - Cyclophosphamide 500mg IV day 1
 - Rituximab 1000mg IV day 2 with 100mg methylprednisolone premed
 - Cyclophosphamide 500mg IV day 15
 - Rituximab 1000mg IV day 16 with 100mg methylprednisolone premed
 - Cyclophosphamide 500mg IV days 30, 45, 60, 75 (ie q2wks)
 - Day 90 start mycophenolate mofetil (MMF) 500mg BID and increase to 1500mg BID over 2-4 weeks

West SG. In Dubois’ Lupus Erythematosus and Related Syndromes, 8th ed, pp368-381, 2013
Treatment

• Major manifestations: Focal
 – Antiplatelet agents
 – Corticosteroids
 – Vasculitis: cyclophosphamide (may need IV q3wks)
 – Clotting: anticoagulants
 • Acute: heparin (follow heparin levels). Caution if lesion >3 cm or cardioembolic stroke. Follow with CT scans
 • Chronic: warfarin (INR 3.0). Follow factor X levels (keep less than 20%)
 – Other: plasma exchange/IVIG

• Maintenance therapy: after 3-6 months of induction therapy transition to MMF.
Case

• **Treatment**
 – IV methylprednisolone 30mg BID with transition to oral prednisone
 • Calcium and vitamin D
 – Levetiracetam for seizures
 – ASA and hydroxychloroquine for aPLabs
 – Fluoxetine for depression
 – Mycophenolate mofetil for concern of anti-ribosomal P and anti-NMO.

• **Follow up**
 – Recovered but stopped medications after discharge from hospital with recurrence of symptoms.
 – Readmitted. Medications restarted. IV cyclophosphamide started instead of MMF.
Prognosis

- NPSLE recurrences: 20-40%
- Second leading lupus cause of death: 7-19% mortality
- Poor prognostic signs
 - Status epilepticus
 - Strokes
 - Coma
- Damage index: worse in those with recurrent episodes and/or aPLabs
 - Diffuse: cognitive deficits
 - Focal: residual deficits